
A Field-Particle Correlation Analysis of a 
Continuum Vlasov-Maxwell Perpendicular 

Collisionless Shock

J. M. TenBarge

September 29, 2020

Collaborators
L. J. Chen, G. Howes, J. 

Juno, S. Wang

Funded by NSF-DOE and NASA



Outline
• Introduce shocks

• Introduce Gkeyll and the field-particle 
correlation

•Present shock results, including ion 
and electron energization in phase 
space



What is a shockwave?



Supernova Timelapse (X-ray data from Chandra)



Parameterizing a Shock

2.2. When Are Shocks? 25

Figure 2.6: A two-dimensional schematic view on Earth’s steady-state bow shock in front of the blunt magneto-
sphere [after Tsurutani & Stone, 1985, with permission of the American Geophysical Union] which forms when
the supersonic solar wind streams against the dipolar geomagnetic field. The bow shock is the diffuse hyperboli-
cally shaped region standing at a distance in front of the magnetopause. The inclined blue lines simulate the solar
wind magnetic field (interplanetary magnetic field IMF). In this figure the lie in the plane. The direction of the
shock normal is indicated at two positions. Where it points perpendicular to the solar wind magnetic field the
character of the bow shock is perpendicular. In the vicinity of this point where the solar wind magnetic field is
tangent to the bow shock the shock behaves quasi-perpendicularly. When the shock is aligned with or against the
solar wind magnetic field the bow shock behaves quasi-parallel. Quasi-perpendicular shocks are magnetically
quiet compared to quasi-parallel shocks. This is indicated here by the gradually increasing oscillatory behaviour
of the magnetic field when passing along the shock from the quasi-perpendicular part into the quasi-parallel
part. Correspondingly, the behaviour of the plasma downstream of the shock is strongly disturbed behind the
quasi-perpendicular shock. Finally, when the shock is super-critical, as is the case for the bow shock, electrons
and ions are reflected from it. Reflection is strongest at the quasi-perpendicular shock but particles can escape
upstream only along the magnetic field. Hence the upstream region is divided into an electron (yellow) and an
ion foreshock accounting for the faster escape speeds of electrons than ions.

The important consequence of the above scaling is that, locally, of all spatial derivatives
∂/∂x ∼ ∂/∂y ≪ ∂/∂n only the derivative across the shock front counts. The gradient
operator ∇ thus reduces to the derivative in the direction opposite to the local shock normal
n or, with coordinate n,
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�,Ms = Ushock/vms, ✓BnMost important parameters for a shock:

In space and astrophysical plasmas, shocks are typically nonlinearly 
steepened fast magnetosonic-whistler waves
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Magnetospheric Multiscale (MMS) Mission



In Situ MMS Data for Perpendicular (89.6o) Shock



Gkeyll Simulation Framework



“It is one thing to mortify curiosity, another to conquer it.”

• The Gkeyll framework is flexible suite of solvers for plasma physics being developed 
at the Princeton Plasma Physics Lab, UMD, Virginia Tech, and MIT

• Solvers include a finite volume method for equations written in conservative form 
and a discontinuous Galerkin finite element method for systems of equations which 
can be written in terms of a Poisson bracket

• Multiple Vlasov-Maxwell publications already:

• P. Cagas, A. Hakim, J. Juno, B. Srinivasan, Continuum kinetic and multi-fluid simulation of a classical 
sheath, Phys. Plasmas (2017). 

• P. Cagas, A. Hakim, B. Srinivasan, Nonlinear saturation of the Weibel instability, Phys. Plasmas (2017).  

• J. Juno, A. H. Hakim, J. M. TenBarge, B. Dorland, E. L. Shi, Discontinuous Galerkin algorithms for 
fully kinetic plasmas. JCP (2018).

• I. Pusztai, J. M. TenBarge, A. N. Csapo, J. Juno, A. Hakim, L. Yi, T. Fülöp, Low Mach-number 
collisionless electrostatic shocks and associated ion acceleration, PPCF (2018) 

• V. Skoutnev, A. Hakim, J. Juno, J. M. TenBarge, Temperature Dependent Saturation of Weibel Type 
Instabilities in Counter-Streaming Plasmas, ApJL (2019) 

• A. Sundström, J. Juno, J. M. TenBarge, and I. Pusztai. Effect of a weak ion collisionality on the 
dynamics of kinetic electrostatic shocks, JPP (2019)  

• I. Pusztai, J.. Juno, A. Brandenburg, J. M. TenBarge, A. Hakim, M. Francisquez, and T. Fülöp. Dynamo 
in weakly collisional non-magnetized plasmas impeded by Landau damping of magnetic fields, PRL 
(2020) 

• A. Hakim and J. Juno, Alias-free, matrix-free, and quadrature-free discontinuous Galerkin 
algorithms for (plasma) kinetic equations, Supercomputing (2020). 

• A. Hakim, M. Francisquez, J. Juno, G. W. Hammett, Conservative Discontinuous Galerkin 
Schemes for Nonlinear Fokker-Planck Collision Operators, JPP (2020) 

The Gkeyll (and Hyde) framework*

*https://github.com/ammarhakim/gkyl
 https://gkyl.readthedocs.io/en/latest/



The discontinuous Galerkin finite element method
We choose to use the discontinuous Galerkin framework to discretize the full phase 
space of the Vlasov-Maxwell system because it combines aspects of

-Finite elements: high order accuracy and ability to handle complicated 
geometries

-Finite volume: locality of data and stability enforcing limiters



∫

Kj

w
∂fh
∂t

dz+

∮

∂Kj

w−n · F̂ dS −
∫

Kj

∇zw · αhfh dz = 0

• What does the discontinuous Galerkin discretization of the Vlasov equation look like?

• Consider a phase space mesh      with cells                                  . T Kj 2 T , j = 1, . . . , N

• Then the problem formulation is, find             , such that for all            ,  fh 2 Vp
h Kj 2 T

fh(z, t) =

NpX

n

Fn(t)wn(z) Vp
h = {v : v|Kj 2 Pp, 8Kj 2 T },
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∂fs
∂t

+∇ · (vfs) +∇v · (Fsfs) = 0

The discrete Vlasov equation

Conserves
Number density

Energy
L2 norm of the distribution decays monotonically

Cost Mitigation
Lua-JIT & C++

Computer algebra pre-generated kernels
MPI + MPI-3 shared memory

Reduced and orthonormal basis sets



Field-Particle Correlations



Separation useful in 
some cases but not 
necessary

Multiply by mv2/2 and integrate to obtain the energy equation

@f
@t + v ·rxf + q

m (E+ v ⇥B) ·rvf = 0
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Field-particle correlations defined  [Howes, Klein, & Li (2017)]
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Field-particle correlations defined  [Howes, Klein, & Li (2017)]



22 G. G. Howes, K. G. Klein, and T. C. Li

Figure 9. (a) Total electron distribution function evaluated at position x = 0, fe(0, v, t) (thin
magenta), the spatially averaged, quasilinear distribution function feQL(v, t) (thick magenta),
and the equilibirum electron distribution function fe0 (black). (b) The nonlinear wave-parti-
cle interaction component of the perturbed electron distribution function at position x = 0,
δfeWn(0, v, t) (thin red) and the quasilinear perturbed distribution function δfeQL(v, t) (thick
red) coincide exactly here. The quasilinear flattening of the distribution function at the reso-
nant velocity v = ω/k (dashed black) is apparent in the total quasilinear distribution function
feQL(v, t) (thick magenta).

6. Field-Particle Correlations

Here we define specifically how we compute the unnormalized correlation given in
(3.20). Consider distribution function and electric field measurements at point x = x0

measured at a time cadence of ∆t. Labelling the discrete times of the measurements as
tj ≡ t(j∆t) for j = 0, 1, 2, . . ., we define δfsj(v) ≡ δfs(x0, v, tj) and Ej ≡ E(x0, tj). For
a choosen correlation time of τ = N∆t, N points will be used for the correlation. With
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The field-particle correlation:

In discrete form Note that f or δf can 
be used
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m (E+ v ⇥B) ·rvf = 0
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Field-particle correlations defined  [Howes, Klein, & Li (2017)]

Note that the time average is an optional procedure that is used to remove 
oscillating, non-secular, energy exchange, which is very useful in turbulent 
systems.
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Figure 8. Timestack plots from the turbulent, βp = 1.0 simulation, using the same layout as
presented in Fig. 5.

the gyrotropic plot of gp(v∥, v⊥), there is no significant organization of the structure of
the distribution gp(v∥) about the preferred parallel resonant velocities of the system,
but rather there are large amplitude fluctuations at |v∥| ≪ vtp. The instantaneous rate
of change of the phase-space energy density as a function of v∥, CE∥

(v∥, τ = 0), plot-
ted in Fig. 8(b), is broadly distributed about the system’s preferred resonant velocities.
However, significant oscillatory behavior in time is retained in the instantaneous energy
transfer.
The averaged correlation CE∥

(v∥, τ = 10.4) is plotted in Fig. 8(c), which shows clearly
that the net energy transfer is localized in the range of the resonant parallel velocities.
Again, this velocity-space signature clearly indicates active Landau damping transferring
energy to the ions via the parallel electric field of the turbulent fluctuations. Tracking
the energy transfer rate at point r0, we plot in panel (d) the velocity-space integrated
correlation ∂wp(r0, t)/∂t and in panel (e) the accumulated energy density transfer to the
ions ∆wp(r0, t). These two metrics show that a net ion energization over time occurs at
this position in the simulation.
While the resonant signature is not as clean as that seen in simpler Vlasov-Poisson

systems, or the single KAW simulation presented earlier in this work, we can quantify
the fraction of the energy transferred by resonant particles using the ratio R, extended
to include the positive and negative resonant velocities. We set v1 = ±0.65vres,lower =
0.66vtp and v2 = ±1.35vres,upper = 2.30vtp and plot R in Fig. 8(f). Over 92% of the
net energy transferred between fields and particles is mediated by the particles in this

Finite time correlation recovers secular 
particle energization in the vicinity of the 
Landau resonant velocities

Field-particle correlations in turbulence [Klein et al JPP (2017)]

> 90% of the 
energy 
dissipation 
occurs in the 
resonant band

Distribution 
function has no 
significant coherent 
structure

FPC with τ=0 
displays sloshing of 
energy to and from 
the particles

Field–particle correlations in gyrokinetic turbulence 13

the ions over time at this position in the simulation, as expected for a collisionlessly
damped KAW.

To better quantify the resonant nature of the secular energy transfer, we define the
ratio

R ⌘

Z v2

v1

dvk|CEk
(vk)|

Z 4vtp

�4vtp

dvk|CEk
(vk)|

, (5.1)

where v1 = 0.65vres and v2 = 1.35vres and the simulation domain extends from
vk = �4vtp to 4vtp. The values of v1 and v2 are selected so that 90 % of the energy
transferred is within the region between these two velocities. The value of R for
the single KAW simulation is presented in figure 5( f ). We use this ratio to assess
how much of the energy transfer in turbulent simulations is due to interactions with
resonant particles. To help in the physical interpretation of R, we estimate what
fraction of the energy transfer would be mediated by these particles if the energy
transfer was equally partitioned according to the equilibrium velocity distribution.
That estimate, which is just the fraction of particles within the resonant energy range
from v1 to v2, given by

R v2

v1
dvk exp[�v2

k
/v2

tp]/
R 4vtp

�4vtp
dvk exp[�v2

k
/v2

tp], has a value
of 0.134 (vertical grey dot-dashed line), much smaller than the fraction computed
from the simulation, R ' 0.9, shown in figure 5( f ). Therefore, the resonant particles
dominate the energy transfer, as expected for the Landau damping occurring in this
system.

6. Field–particle correlations in strong plasma turbulence

6.1. Single-point field–particle correlations
With the single KAW results providing context for the interpretation of field–particle
correlation results, we next apply the field–particle correlation technique to data from
a single spatial point r0 = [x, y, z] = [0, 10.2, 0]⇢p in the turbulent �p = 1.0 simulation
domain, where [0, 0, 0] is the midpoint of the simulation box. In figure 6(a), the
complementary gyrokinetic distribution function gp(vk, v?) is plotted at r0 in the �p =

1.0 run at a time sufficiently late in the run for the turbulence to be fully developed,
t!A = 14.1. Solid grey lines indicate the parallel resonant velocity for a KAW with
the peak proton damping rate, vres = 1.282vtp, and dashed lines indicate the resonant
velocities associated with KAWs having proton damping rates equal to 1/e of the peak
value, as identified in figure 1. We calculate the instantaneous phase-space energy
density transfer CEk

(vk, v?, ⌧ = 0) in (b), and in (c), we calculate the correlation
averaged over an interval ⌧!A = 10.4.

Unlike the case for a single KAW presented in figure 3(a), figure 6(a) shows
that the structure of the complementary distribution function gp(vk, v?) for the
strong turbulence simulation has large amplitude fluctuations spread more broadly
over velocity space, with the largest amplitude fluctuations occurring at velocities
|vk| ⌧ vtp. Note also that, for the single KAW case in figure 3(a), the fluctuations
in gp(vk, v?) are almost entirely restricted to vk > 0; the reason is because the wave
is propagating in only one direction. In the strong turbulence simulation shown in
figure 6(a), Alfvénic fluctuations propagate in both directions, thereby leading to
significant fluctuations in gp(vk, v?) at both vk > 0 and vk < 0.

Taking the instantaneous correlation CEk
with ⌧ = 0 in figure 6(b), which

corresponds to the rate of instantaneous energy transfer between the parallel electric

:DD C,  53 4 697 9 5 7 D7 C :DD C, 6  9  1
. 3676 8 :DD C,  53 4 697 9 5 7 0 57D 2 /5D 3D , , C 4 75D D D:7 3 4 697 7 D7 C 8 C7 3 3 34 7 3D

The single point field particle correlation of a 
3x2v gyrokinetic turbulence simulation. From 
Klein et al JPP (2017)
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but rather there are large amplitude fluctuations at |v∥| ≪ vtp. The instantaneous rate
of change of the phase-space energy density as a function of v∥, CE∥

(v∥, τ = 0), plot-
ted in Fig. 8(b), is broadly distributed about the system’s preferred resonant velocities.
However, significant oscillatory behavior in time is retained in the instantaneous energy
transfer.
The averaged correlation CE∥

(v∥, τ = 10.4) is plotted in Fig. 8(c), which shows clearly
that the net energy transfer is localized in the range of the resonant parallel velocities.
Again, this velocity-space signature clearly indicates active Landau damping transferring
energy to the ions via the parallel electric field of the turbulent fluctuations. Tracking
the energy transfer rate at point r0, we plot in panel (d) the velocity-space integrated
correlation ∂wp(r0, t)/∂t and in panel (e) the accumulated energy density transfer to the
ions ∆wp(r0, t). These two metrics show that a net ion energization over time occurs at
this position in the simulation.
While the resonant signature is not as clean as that seen in simpler Vlasov-Poisson

systems, or the single KAW simulation presented earlier in this work, we can quantify
the fraction of the energy transferred by resonant particles using the ratio R, extended
to include the positive and negative resonant velocities. We set v1 = ±0.65vres,lower =
0.66vtp and v2 = ±1.35vres,upper = 2.30vtp and plot R in Fig. 8(f). Over 92% of the
net energy transferred between fields and particles is mediated by the particles in this

The single point field particle correlation of a 
3x2v gyrokinetic turbulence simulation. From 
Klein et al JPP (2017)

Finite time correlation recovers secular 
particle energization in the vicinity of the 
Landau resonant velocities

Field-particle correlations in turbulence [Klein et al JPP (2017)]

> 90% of the 
energy 
dissipation 
occurs in the 
resonant band

Distribution 
function has no 
significant coherent 
structure

FPC with τ=0 
displays sloshing of 
energy to and from 
the particles
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the ions over time at this position in the simulation, as expected for a collisionlessly
damped KAW.

To better quantify the resonant nature of the secular energy transfer, we define the
ratio

R ⌘

Z v2

v1

dvk|CEk
(vk)|

Z 4vtp

�4vtp

dvk|CEk
(vk)|

, (5.1)

where v1 = 0.65vres and v2 = 1.35vres and the simulation domain extends from
vk = �4vtp to 4vtp. The values of v1 and v2 are selected so that 90 % of the energy
transferred is within the region between these two velocities. The value of R for
the single KAW simulation is presented in figure 5( f ). We use this ratio to assess
how much of the energy transfer in turbulent simulations is due to interactions with
resonant particles. To help in the physical interpretation of R, we estimate what
fraction of the energy transfer would be mediated by these particles if the energy
transfer was equally partitioned according to the equilibrium velocity distribution.
That estimate, which is just the fraction of particles within the resonant energy range
from v1 to v2, given by

R v2

v1
dvk exp[�v2

k
/v2

tp]/
R 4vtp

�4vtp
dvk exp[�v2

k
/v2

tp], has a value
of 0.134 (vertical grey dot-dashed line), much smaller than the fraction computed
from the simulation, R ' 0.9, shown in figure 5( f ). Therefore, the resonant particles
dominate the energy transfer, as expected for the Landau damping occurring in this
system.

6. Field–particle correlations in strong plasma turbulence

6.1. Single-point field–particle correlations
With the single KAW results providing context for the interpretation of field–particle
correlation results, we next apply the field–particle correlation technique to data from
a single spatial point r0 = [x, y, z] = [0, 10.2, 0]⇢p in the turbulent �p = 1.0 simulation
domain, where [0, 0, 0] is the midpoint of the simulation box. In figure 6(a), the
complementary gyrokinetic distribution function gp(vk, v?) is plotted at r0 in the �p =

1.0 run at a time sufficiently late in the run for the turbulence to be fully developed,
t!A = 14.1. Solid grey lines indicate the parallel resonant velocity for a KAW with
the peak proton damping rate, vres = 1.282vtp, and dashed lines indicate the resonant
velocities associated with KAWs having proton damping rates equal to 1/e of the peak
value, as identified in figure 1. We calculate the instantaneous phase-space energy
density transfer CEk

(vk, v?, ⌧ = 0) in (b), and in (c), we calculate the correlation
averaged over an interval ⌧!A = 10.4.

Unlike the case for a single KAW presented in figure 3(a), figure 6(a) shows
that the structure of the complementary distribution function gp(vk, v?) for the
strong turbulence simulation has large amplitude fluctuations spread more broadly
over velocity space, with the largest amplitude fluctuations occurring at velocities
|vk| ⌧ vtp. Note also that, for the single KAW case in figure 3(a), the fluctuations
in gp(vk, v?) are almost entirely restricted to vk > 0; the reason is because the wave
is propagating in only one direction. In the strong turbulence simulation shown in
figure 6(a), Alfvénic fluctuations propagate in both directions, thereby leading to
significant fluctuations in gp(vk, v?) at both vk > 0 and vk < 0.

Taking the instantaneous correlation CEk
with ⌧ = 0 in figure 6(b), which

corresponds to the rate of instantaneous energy transfer between the parallel electric
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Figure 2. The ion (top two rows) and electron (bottom row) distribution functions plotted
through the shock at t = 11⌦�1

cp . As we move from upstream, x = 24.5di, through the shock
ramp x = 21.5di we can identify the reflected ion population as well as a broadening of the
electron distribution function.

is having on the energy exchange by integrating particle trajectories in the self-consistent
Ey component of the electric field, but no Ex, and compare the resulting velocity-space
signatures to the signatures found from integrated particle trajectories including the self-
consistent Ex, as well as the signatures from the simulation using both the self-consistent
fields and self-consistent distribution functions. We will thus be able to more accurately
constrain what velocity-space signatures we may generally expect from ions undergoing
shock-drift acceleration and electrons adiabatically heating as a result of a collisionless
shock.

4. Field-Particle Correlation Analysis: ions

We first turn our attention to the ions and how the ions are energized in the perpen-
dicular collisionless shock. Our tool of choice is the field-particle correlation (FPC),

C(x,v, t, ⌧) = �qs
2

1

⌧

Z t+⌧

t
|v|2E(x, t0) · rvfs(x,v, t

0) dt0, (4.1)

Weakly Collisional Perpendicular Shock Simulation Evolution
6

Figure 1. The x-electric field (top), y-electric field (second from top), z-magnetic field (middle),
ion distribution function integrated in vy (second from bottom), and electron distribution func-
tion (bottom) after the perpendicular shock has formed and propagated through the simulation
domain, t = 11⌦�1

cp . We have marked an approximate transition from upstream of the shock to
the shocked plasma (dashed-dotted line), and likewise an approximate from the shock to the
dowstream region (dashed line). To mark the oscillation of the electromagnetic fields and the
sloshing of energy between the fields and particles in the downstream region, we have used a
solid black line to mark the approximate compression of the magnetic field, along with E = 0.
We expect the y-electric field to roughly oscillate about 0 in the frame of the simulation, as the
“reflecting-wall” set-up is performed in the frame of the downstream plasma, where the E⇥B
velocity is 0.

The ion (top two rows) and electron (bottom row) 
distribution functions plotted through the shock.

Compression ratio
of 2.5

Electron VDF

Ion VDF
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FPC Analysis of Perpendicular Collisionless Shock 7

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

2

4

6

8

10

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

Figure 1. (a) Real space trajectory of an ion as it traverses the shock front and (b) velocity
space trajectory .

about the upstream E × B velocity (black star) corresponds to the Larmor orbit of
the ion about the upstream inflow velocity in the (vx, vy) plane. Upon first crossing the
magnetic discontinuity to x < 0, the particle changes to a Larmor gyration in the (vx, vy)
plane (blue) about the downstream E×B velocity (green star). In the larger amplitude
downstream perpendicular magnetic field, the radius of the Larmor motion in the (x, y)
plane is reduced (blue), and under appropriate conditions (see below), it can lead to the
particle crossing back upstream to x > 0 (red).

When the ion passes back upstream to x > 0, it will once again undergo a Larmor
orbit in the (vx, vy) plane (red) about the upstream E×B velocity (black star). In this

10
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Figure 2. (a) Profiles along the shock normal direction of the transverse magnetic field Bz

(blue) and the motional electric field Ey (red), (b) trajectory of a reflected ion in the (x, y)
plane, and (c) the rate of work done by the electric field on the distribution of particles jyEy. .

[]

Alfvén speed, vA v2A = B2
0/4πn0mi

Sound speed, cs c2s = γn0(Ti + Te)/n0mi

Fast Magnetosonic velocity, vf v2f = v2A + c2s
Species Thermal Velocity, vts v2ts = 2Ts/ms

Fluid Total Plasma Beta, β β = c2s/v
2

A

Individual Species Plasma Beta, βs βs = 8πnsTs/B
2

Alfvén Mach number, MA MA = Ux/vA
Sonic Mach Number, Ms Ms = Ux/cs

Fast Magnetosonic Mach Number, Mf Mf = Ux/vf

Table 1. Definitions of Mach numbers, etc. A quasineutral proton-electron plasma equi-
librium is assumed, n0i = n0e, with a realistic mass ratio mi/me = 1836. Note
that β = γ/2(βi + βe) = γ/2[v2ti/v

2

A + v2te/v
2

A(me/mi)], where γ = 5/3 is the adi-
abatic index. The Boltzmann constant is absorbed into Ts, giving temperature in units
of energy. In terms of the plasma beta values, we have cS/vA =

√

γ/2(βi + βe) and

vf/vA =
√
1 + β =

√

1 + γ/2(βi + βe).

addition to the incoming upstream population centered at the upstream E×B velocity,
a component of reflected particles that have returned upstream is seen at vy < 0 and
−2 ! vx/vti ! 2. Overplotted on the distribution is the trajectory in (vx, vy) for the
ion analyzed in Fig. 1, showing that this reflected population indeed corresponds to the
red segment of the trajectory in that figure. We compute the field-particle correlation
CEy

(vx, vy) the determines the energization of ions by the motional electric field, as shown
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Figure 3. Plots of the ion velocity distribution fi(vx, vy) and field-particle correlation CEy

within the shock foot at xA/di = 0.4 (a,b) and just downstream of the discontinuity at
xB/di = −1 (c,d). Averaging over the downstream range −4 ! x/di ! −2 yields (e) the distri-
bution function ⟨fi(vx, vy)⟩ and the field-particle correlation CEy of the averaged distribution.
.
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Figure 6. The ion distribution function from the Gkeyll simulation (bottom row, left column),
and CEx computed from both the Gkeyll simulation (bottom row, middle column) and inte-
grated ion trajectories (bottom row, right column) in the given simulation electromagnetic fields
(top row). The distribution function and CEx correlations are plotted at xB = 21.8di, near the
peak of the cross-shock electric field (vertical red line in top row). We note two features in the
velocity-space signature found from computing CEx : the strong negative correlation coincident
with the incoming beam, denoting the deceleration of the incoming flow and transfer of energy
from the bulk upstream kinetic energy to electromagnetic energy, and the modest positive cor-
relation at vy < 0, vx > 0 where particles can now be accelerated by the cross-shock electric
field and pushed back upstream. This acceleration of ions of particular velocities is the principal
reason for the increased e�ciency of shock-drift acceleration despite the finite shock width, as
the cross-shock electric field assists in increasing the phase space density of reflected ions that
can gain energy along the motional electric field upstream.

amplitude blue structure for vy < 0 in comparison to the red structure for vy > 0, implies
that Ey is leading to a new loss of electron energy.

Thus, despite the similar structure in CEy , the FPC now is suggesting that whatever
process is present leads to a net loss of energy in the electrons. In fact, it now appears
that the cross-shock electric field is responsible for any energization of the electrons as
evidenced by CEx . And yet, the picture must not be wholly di↵erent from Paper I, as the
electron adiabatic invariant, µ = T?/Bz, is still well conserved through the shock—see
Figure 8.

We thus proceed in a similar fashion to Section 4, leveraging the flexibility of our model
to examine the e↵ect of the cross-shock electric field of the energetics of the electrons.
We plot in Figure 9 a comparison of electron trajectories (b) and the single-point (c) and

Gkeyll Model with cross shock
electric field
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Figure 5. (a) Electromagnetic fields approximated from the self-consistent Gkeyll simulation.
(b) Example ion trajectories for full model (solid) and zero Ex model (dashed). (c) Rate of
work done by the components of the electric field, jyEy (red) and jxEx (blue) for the full
model (solid) and zero Ex model (dashed), along with total j · E (black). (d) Cumulative work
done integrated from upstream

R
x
j · E. Inclusion of the cross-shock electric field enhances ion

reflection, thereby achieving a larger energy gain due to the motional electric field Ey through
shock-drift acceleration.

Model with (solid) and 
without (dashed) the cross 

shock electric field

Ion trajectory and energization



Electron energization



Electron Evolution Through the Shock
6

Figure 1. The x-electric field (top), y-electric field (second from top), z-magnetic field (middle),
ion distribution function integrated in vy (second from bottom), and electron distribution func-
tion (bottom) after the perpendicular shock has formed and propagated through the simulation
domain, t = 11⌦�1

cp . We have marked an approximate transition from upstream of the shock to
the shocked plasma (dashed-dotted line), and likewise an approximate from the shock to the
dowstream region (dashed line). To mark the oscillation of the electromagnetic fields and the
sloshing of energy between the fields and particles in the downstream region, we have used a
solid black line to mark the approximate compression of the magnetic field, along with E = 0.
We expect the y-electric field to roughly oscillate about 0 in the frame of the simulation, as the
“reflecting-wall” set-up is performed in the frame of the downstream plasma, where the E⇥B
velocity is 0.

Suggests that the grad B drift is the 
dominant energization
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Figure 8. The electron adiabatic invariant, µ = T?/Bz (blue), the electron temperature (red),
and the magnetic field (black), normalized to their value upstream and plotted through the
shock. The electron temperature rises commensurate with the compression of the magnetic field
such that the electron µ is well conserved through the shock.

both electrons undergo many Larmor orbits through the shock. Unlike in the ion case,
where a single Larmor orbit was strongly a↵ected by the presence of the cross-shock
electric field, regardless of whether there is a cross-shock electric field, the electrons are
strongly magnetized through the shock. We can then expect the electron’s adiabatic
invariant to be well conserved through the shock.

But if this conservation of the adiabatic invariant holds irrespective of whether a cross-
shock electric field is present, what does this result mean for the picture of adiabatic
heating described in Paper I? Importantly, Figure 9, panels (c) and (d), demonstrates
that the electrons are still gaining energy through the shock, as we expect if the elec-
tron’s adiabatic invariant is conserved and thus T? must increase commensurate with
the increasing magnetic field due to the compression of the shock. The fact that the
electron’s adiabatic invariant is still conserved and that all of the electron temperature
increase is due to the compression of the magnetic field, as shown in Figure 8, would then
suggest that the velocity-space signature for adiabatic heating is more subtle than what
was found in Paper I. In fact, the equivalence of the total je · E for both the full model
and zero-Ex model, is suggestive that the heating the electrons in the self-consistent
simulation and idealized modal of Paper I must not be wholly di↵erent.

We can understand this subtlety of the signature of adiabatic heating via a drift anal-
ysis through the shock. We plot in Figure 10 a comparison of the strength of the major
single-particle drifts through the shock (a), the E⇥B in x and y, the rB drift in y, and
the polarization drift in x, along with each components contribution to the net exchange
of energy je · E (b). Importantly, although the E ⇥ B in x and y is large, we expect no
net energy gain from this drift as,

(E ⇥ B) · E = (EyBz) · Ex � (ExBz)Ey = 0. (5.1)

So, while individually plotting the energization due to one component of the E⇥B may
appear large, summed over all components the energization should be zero, as we can
see in Figure 10 (b).

In this regard, including the components of the E⇥B flow in the computation of je ·E
is somewhat misleading, as both components of the E⇥B flow are much larger than the
other drift components present, rB in y and polarization in x—see Figure 10(a). Note

Electron VDF

Ion VDF
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Figure 4. (a) Profiles along the shock normal direction of the perpendicular magnetic field Bz

(blue) and the motional electric field Ey (red), (b) trajectory of a reflected ion in the (x, y)
plane, and (c) the rate of work done by the electric field on the distribution of particles jyEy. .

by a factor of Bd/Bu = 4. In the shock-frame, we set a constant and uniform motional
electric field Ey < 0 that drives the plasma inflow from upstream (x > 0) toward the
magnetic discontinuity at x = 0.

The plasma flow in the normal direction everywhere is given by the E × B drift,
U(x) = Ey/B(x)x̂ < 0. For this choice of the magnetic and electric field structure,
we obtain a ratio of the downstream to upstream velocity in the direction normal to the
shock of Ud/Uu = 1/4. This idealized model has no variation in the cross-shock potential,
and therefore no electric field component in the shock normal direction.

In this model, the increase in the magnetic field magnitude through the ramp leads to
a steady decrease in the E×B velocity as the plasma flows through the shock transition.
In addition, the gradient in the normal direction of the magnetic field magnitude through
the ramp induces a ∇B drift in the +y direction. As we shall see, it is the ∇B drift that
leads to the energization of the electrons by the motional electric field, Ey.

3.1. Analysis of a Single Electron Trajectory

Once again, we will begin out exploration of the electron energization in perpendicular
shocks through a single-particle-motion analysis of an electron through our idealized
shock model. In Fig. 4, we plot (a) the profile of the perpendicular magnetic field Bz(x)
(blue) and the motional electric field Ey(x) (red) along the shock normal direction, as
well as (b) the trajectory of an electron in the (x, y) plane as it flows through the shock
ramp over 0 ! x/di ! 2. The trajectory plot shows clearly the ∇B drift in the +y
direction. A salient different between the single particle motion for electrons and ions

14

is that the electron thermal velocity is larger than the inflow velocity, so electrons can
move in the +x direction even upstream of the shock.

Although the electron is constantly gaining and losing energy as part of its E×B drift
due to the motional electric field Ey, the net effect on the particle energy over a Larmor
orbit is zero, because the drift in the −x direction is perpendicular to the electric field.
But, in the region where perpendicular magnetic field changes magnitude 0 ! x/di ! 2,
there arises a ∇B drift in the +y direction, which indeed leads to a net energization of
the electrons by Ey. Another way to view the electron energization is to consider the
electrostatic potential of the motional electric field, which increases linearly in the +y
direction. For the negatively charged electrons, the displacement of the trajectory in the
+y direction shown in Fig. 4(b) will lead to a gain in the electron energy.

As it turns out, the rate of energization of the electrons by the ∇B drift in the motional
electric field is precisely that needed to conserve the adiabatic invariant of the electron
µ = mev2⊥/2Bz. This can be shown in general by calculating the net rate of work done
by Ey due to the ∇B drift, which can change the perpendicular kinetic energy of the
electrons,

dmev2⊥/2

dt
= qeu∇BEy (3.1)

where the magnitude of the ∇B drift in the +y direction is given by

u∇B =
mev2⊥
2qeBz

(

1

Bz

∂Bz

∂x

)

(3.2)

and for the static fields in this model, the total time derivative is dominated by the
E × B velocity, d/dt = ∂/∂t + ux∂/∂x = uE×B∂/∂x. Substituting uE×B = Ey/Bz, we
can manipulate (3.1) to obtain

∂

∂x

mev2⊥
2Bz

=
∂µ

∂x
= 0, (3.3)

proving that the electron’s adiabatic invariant µ is conserved.
Therefore, we see that, in the limit ρe/L ≪ 1, the electron energization is adiabatic,

where the energy gain arises due to the ∇B drift perpendicular to the shock normal.
Violation of the adiabatic invariance for electrons in real shocks, of course, may occur
due to fluctuations on scales l ∼ de caused by kinetic instabilities arising either upstream
or in the shock transition layer.

3.2. Energization of the Electron Velocity Distribution

Next, we use the Vlasov mapping technique to determine the evolution of the electron
distribution function through this perpendicular shock modeled as a linear ramp. We
take the Alfvén Mach number of the inflow to be MA = 4.9 for a plasma with ion plasma
beta βi = 8πniTi/B2

0 = 1.3 and electron plasma beta βe = 0.7, yielding a sonic Mach
number Ms = 3.8, and a fast magnetosonic Mach number Mf = 3.0. Note that the
upstream and downstream electric and magnetic fields in this linear ramp shock model
are the same as that in the magnetic discontinuity shock model in §2.

In Fig. 5, we plot the electron velocity distribution fe(vx, vy) and field-particle corre-
lation CEy

at the positions A, B, C, and D, shown by the vertical red lines in Fig. 4. The
net rate of electron energization jyEy =

∫

dvxdvyCEy
(vx, vy) is also plotted in Fig. 4(c),

showng that the net electron energization occurs only within the shock ramp, where the
∇B drift leads to energization by the motional electric field Ey. Upstream of the shock
ramp at xA/di = 2.5, the field-particle correlation CEy

shows a velocity-space signature
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is that the electron thermal velocity is larger than the inflow velocity, so electrons can
move in the +x direction even upstream of the shock.

Although the electron is constantly gaining and losing energy as part of its E×B drift
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there arises a ∇B drift in the +y direction, which indeed leads to a net energization of
the electrons by Ey. Another way to view the electron energization is to consider the
electrostatic potential of the motional electric field, which increases linearly in the +y
direction. For the negatively charged electrons, the displacement of the trajectory in the
+y direction shown in Fig. 4(b) will lead to a gain in the electron energy.
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Figure 5. Plots of the electron velocity distribution fe(vx, vy) and field-particle correlation CEy

within the shock foot at xA/di = 2.5 (a,b), at xB/di = 1.8 (c,d), at xC/di = 1.0 (e,f), and at
xD/di = 0.1 (g,h). .
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Figure 9. (a) Electromagnetic fields approximated from the self-consistent Gkeyll simulation.
(b) Example electron trajectories for full model (black) and zero Ex model (blue), showing
qualitatively di↵erent drifts in the y direction. (c) Rate of work done by the components of the
electric field, jyEy (red) and jxEx (blue) for the full model (solid) and zero Ex model (dashed),
along with total j · E (black). Note that the total energization (black, solid and dashed) is the
same for both cases. (d) Cumulative work done integrated from upstream

R
x
j ·E. The electrons

experience adiabatic heating in both cases, although the detailed mechanisms of energization
involve qualitatively di↵erent drifts.
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Figure 7. A comparison of (a,b) the electron distribution functions fe(vx, vy), (c,d) the CEx

and (e,f) the CEy components of the FPC, Eqns. 4.3 and 4.4, computed at xB = 21.8di from
the self-consistent Gkeyll simulation (left column) and from modeled single-particle-motion
trajectories (right column). The contours on the FPC plots, which are the same in both CEx

and CEy , make clear that Ey leads to a net loss of electron energy, whereas Ex yields a net
increase of electron energy.

cumulative (d) e↵ect of je ·E on the electrons, using both the full-model fields, and only
Ey and Bz, zero-ing out the cross-shock electric field. Interestingly, while at first glance
the electron trajectories between the two di↵erent models may appear quite di↵erent, we
note the di↵erence seems to principally arise due to di↵erent single particle drifts and

Gkeyll Model with cross shock
electric field
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Choosing the Correct Frame for the Field-Particle Correlation

20

gain. After the comparison between the full model and zero-Ex model in Figure 9(c) and
(d) revealed that the total je · E was roughly equivalent between the two models, when
the zero-Ex model only had energy exchange due to the alignment of the rB drift with
the motional electric field, we might have anticipated that the only energy gain was due
to this same adiabatic heating process from Paper I.

So, if these large E ⇥ B flows are polluting the analysis of the overall exchange of the
energy, when fundamentally the electron heating is principally due to the alignment of
the rB drift with the motional electric field, we return to the velocity space signatures
plotted in Figure 7 to determine how we might filter out the FPC signal from these large
E ⇥ B flows. We consider a modification to Eqns. (4.3) and (4.4) which now transforms
the vy coordinate to the local E⇥B frame in y, in addition to the previous transformation
to the shock-rest frame in vx,

C⇤
Ex

(x, v0x, v
0
y, t) = �qs

(v0x � Ushock)2

2
E0

x
@fs
@v0x

, (5.4)

C⇤
Ey

(x, v0x, v
0
y, t) = �qs

(v0y � Ex/Bz)2

2
[E0

y � UshockBz]
@fs
@v0y

, (5.5)

where we have dropped the explicit dependence for notational convenience. Importantly,
in this new frame,

E0
x = Ex � UyBz = Ex � Ex = 0, (5.6)

and we expect no energization in the x degree of freedom. While this eliminates the
possibility of examining the contribution of the polarization drift to the energization,
from Figures 9 and 10, we expect so long as we can retain the contribution to the
energization from the rB drift, we will capture the majority of the energization of the
electrons. We plot in Figure 11 the C⇤

Ey
correlation in this combined shock-rest frame in

x, and E ⇥ B frame in y, alongside the untransformed CEy (a repeat of Figure 7(e)) for
reference.

We note two things immediately from Figure 11. Firstly, that this additional transfor-
mation of the vy coordinate to the local E⇥B frame has switched the sign of the energy
gain, from net negative when untransformed CEy (b) to net positive in the transformed
C⇤

Ey
, as evidenced by the over-plotted contours in the blue-red lobe structure, and sec-

ondly, the new C⇤
Ey

correlation is strikingly similar to the correlation found in Paper
I. Both notes are perhaps unsurprising, as this transformation has removed the energy
exchange in the vy degree of freedom due to the E ⇥ B flow, and we are left with the
very same energization mechanism found in the idealized model of Paper I: alignment of
the rB drift with the motional electric field, Ey.

But a salient point worth mentioning is that the transformation of vy to the local E⇥B

frame has not only revealed the same velocity space signature for adiabatic heating as
Paper I, it has allowed the extraction of an energization signature which was buried in
the large background energy exchange from the E⇥B flow. Ultimately, the energization
via alignment of the rB drift with the motional electric field, via adiabatic heating,
is masked by the large oscillation of energy between the vx and vy degrees of freedom
due to the two components of the E ⇥ B motion. In this way, while adiabatic heating
is robustly the means by which the electrons heat in both the idealized model in Paper
I, and the self-consistent simulation presented here, care must be taken to not allow the
large E ⇥ B flows obscure the energization and velocity space signature provided to us
by the FPC.

In fact, despite this subtlety of subtracting the background energy exchange between
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very same energization mechanism found in the idealized model of Paper I: alignment of
the rB drift with the motional electric field, Ey.

But a salient point worth mentioning is that the transformation of vy to the local E⇥B

frame has not only revealed the same velocity space signature for adiabatic heating as
Paper I, it has allowed the extraction of an energization signature which was buried in
the large background energy exchange from the E⇥B flow. Ultimately, the energization
via alignment of the rB drift with the motional electric field, via adiabatic heating,
is masked by the large oscillation of energy between the vx and vy degrees of freedom
due to the two components of the E ⇥ B motion. In this way, while adiabatic heating
is robustly the means by which the electrons heat in both the idealized model in Paper
I, and the self-consistent simulation presented here, care must be taken to not allow the
large E ⇥ B flows obscure the energization and velocity space signature provided to us
by the FPC.

In fact, despite this subtlety of subtracting the background energy exchange between
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Figure 11. A comparison of the FPC from Ey where both vx and vy are shifted to the shock-rest
frame and local s E ⇥ B frame respectively (a) to our previous computation of the FPC from
Ey using only a frame transformation in vx to the shock-rest frame (b). Note that panel (b)
is a repeat of panel (e) of Figure 7. While the previous correlation, denoted CEy suggested
the electrons were losing energy in this degree of freedom, the newly transformed correlation,
denoted C⇤

Ey
demonstrates that the electrons are in fact gaining energy once the E⇥B motion in

this degree of freedom is subtracted out. This energization mechanism, caused by an alignment
of the rB drift with the motional electric field, Ey, is the same mechanism responsible for
energizing the electrons in the idealized model of Paper I and the velocity-space signature for
this adiabatic heating now matches the results of Paper I exactly after subtracting o↵ the E⇥B
component of the energy exchange.

the vx and vy degrees of freedom due to E⇥B flows, the analysis presented here suggests
the results of Paper I are more general than previously realized. While the polarization
drift is small compared to the rB drift through the shock, the energization due to the
polarization drift is still a component to the overall energization of the electrons. In this
regard, the velocity space signature presented in igure 4 (c) and (d) suggests that the
red-blue lobe structure, with the slight asymmetry in the positive (red) component of
the phase space energy exchange, is a robust signature of adiabatic heating from the
alignment of any single-particle drift (except E ⇥ B) with the motional electric field.

This alignment between a single-particle drift and the motional electric field, for a
distribution of particles, allows the distribution to gain energy precisely because there
are now more particles with the correct sign of velocity to gain energy, i.e., the distribution
is centered on this drift and thus there will be an asymmetry in the energization due to
the electric field producing the E ⇥ B drift. We know a plasma undergoing only E ⇥ B

motion does not gain or lose energy, at least if one is careful to add all components of
the energy exchange due to E⇥B flows together. All the particles gaining energy due to
(E ⇥ B) · E motion are exactly counter-balanced by all the particles losing energy due
to this same (E⇥B) ·E. Introduce an asymmetry though, whether it is a rB drift or a
polarization drift, and now there will be more particles gaining (or losing) energy through
the cycle of E ⇥ B motion, leading to an overall energization (or de-energization).

We thus conclude our analysis of the electron energization having confirmed the velocity-
space signature of adiabatic heating found in Paper I in self-consistent simulations. We
note that while the velocity-space signature of adiabatic heating, and ultimately the
overall energization of the electrons, was very similar to the idealized model considered
in Paper I, the introduction of the cross-shock electric field obscured the energization via
adiabatic heating and velocity-space signature of this alignment between the rB drift
and motional electric field. However, using an analysis of the drifts, and leveraging our

Shock rest frameCombined rest frame

Net energy 
loss

Net energy 
gain

Have been considering only the shock rest frame
But, component ExB energization is significant, though it provides no net energization

So, let’s transform one component of it away

Signature of adiabatic heating



• The Gkeyll code provides pristine, high resolution access to full phase space dynamics.

• We have constructed a diagnostic that correlates oscillations in the electromagnetic fields 
with plasma particles, the field-particle correlation.

• The field-particle correlation analysis technique has been employed to identify the phase 
space structure of energy transfer via shock drift acceleration and adiabatic heating 
between the fields and particles in simulations. 

• The role of the cross shock potential in energizing particles was found to be minimal.

Conclusions and Ongoing Work

• Work is ongoing to identify these signatures within in situ spacecraft data. 

• Expansion of the simulations to 2x-3v, quasi-perpendicular geometries.

• Additional particle energization processes are also being examined in simulations and 
spacecraft data, e.g., stochastic shock acceleration, adiabatic heating, and reconnection.


